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The temporal structure of behavior contains a rich source of information about its
dynamic organization, origins, and development. Today, advances in sensing and data
storage allow researchers to collect multiple dimensions of behavioral data at a fine
temporal scale both in and out of the laboratory, leading to the curation of massive
multimodal corpora of behavior. However, along with these new opportunities come new
challenges. Theories are often underspecified as to the exact nature of these unfolding
interactions, and psychologists have limited ready-to-use methods and training for
quantifying structures and patterns in behavioral time series. In this paper, we will
introduce four techniques to interpret and analyze high-density multi-modal behavior
data, namely, to: (1) visualize the raw time series, (2) describe the overall distributional
structure of temporal events (Burstiness calculation), (3) characterize the non-linear
dynamics over multiple timescales with Chromatic and Anisotropic Cross-Recurrence
Quantification Analysis (CRQA), (4) and quantify the directional relations among a set of
interdependent multimodal behavioral variables with Granger Causality. Each technique
is introduced in a module with conceptual background, sample data drawn from
empirical studies and ready-to-use Matlab scripts. The code modules showcase each
technique’s application with detailed documentation to allow more advanced users to
adapt them to their own datasets. Additionally, to make our modules more accessible
to beginner programmers, we provide a “Programming Basics” module that introduces
common functions for working with behavioral timeseries data in Matlab. Together, the
materials provide a practical introduction to a range of analyses that psychologists can
use to discover temporal structure in high-density behavioral data.

Keywords: time series analysis, data visualization, burstiness, cross recurrence quantification analysis, Granger
causality, high-density behavior data

INTRODUCTION

Our title was inspired by a highly influential paper by Jeffrey L. Elman highlighting the
importance of characterizing the temporal structure of behavior for understanding human
cognition (Elman, 1990). We believe this is even more true for studying human development.
All forms of behavior are organized as cascades of real-time events (Spivey and Dale, 2006;
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Adolph et al., 2018). The micro-dynamics of infants’
behaviors and their interactions with the world shape their
longitudinal trajectories across domains, from motor and
language development to socio-emotional development and
psychopathology (Thelen, 2000; Adolph and Berger, 2006;
Masten and Cicchetti, 2010; Landa et al., 2013; Blair et al., 2015;
West and Iverson, 2017). By studying behavior as it unfolds
over time, we are able to reveal rich source of information
about its dynamic organization, origins, and development
(Bakeman and Quera, 2011).

In the past two decades, technological advances in sensing
and mobile computing have provided researchers with new ways
to collect behavioral data at a fine temporal scale both in and
out of the laboratory (de Barbaro, 2019). This has led to the
curation of massive multimodal corpora of behavior (Yang and
Hsu, 2010; Franchak and Adolph, 2014; Smith et al., 2015;
Matthis et al., 2018). Leveraging these massive new datasets to
characterize the complex processes of human behavior presents
outstanding opportunities, as well as challenges for psychologists
in all fields.

Analysis of these rich corpora of behavioral data faces
three main challenges. The first challenge is that our world
is profoundly multimodal (Smith and Gasser, 2005; Kolodny
and Edelman, 2015). Behaviors are organized with multiple
time-locked sensory-motor systems which influence each other
simultaneously (Garrod and Pickering, 2009; Louwerse et al.,
2012; Fusaroli and Tylén, 2016). In daily social interactions,
people communicate via gaze, speech, facial expression, gesture
and even body movements (Vinciarelli et al., 2009; Knapp et al.,
2013; de Barbaro et al., 2016b). At every moment during an
interaction, interlocutors respond to the multimodal behavioral
signals from one another, make adjustments, and influence
one another in real time. This poses a major methodological
challenge to researchers interested in the complex structure
of activity within and between individuals. Specifically, how
should the directional influence from one behavioral variable to
another within a system be quantified when multiple variables are
interdependent on each other?

Second, behaviors occur at and unfold across many distinct
interconnected timescales (Ballard et al., 1997; Wijnants et al.,
2012a; Abney et al., 2014; Fusaroli et al., 2015; Darst et al., 2016;
Den Hartigh et al., 2016). Facial expressions, eye gaze shifts and
bursts of laughter occur at short timescales, often lasting less
than one second (Kendon, 1970; Hayhoe and Ballard, 2005; de
Barbaro et al., 2011; Knapp et al., 2013). At longer timescales,
these micro behaviors are organized into more extended episodes
of interaction. For instance, conversations occur at timescales
of minutes or hours, contributing to language development
(Cox and van Dijk, 2013), whereas friendships can last years
or decades (Demir, 2015). Behaviors at different temporal scales
have their own emergent properties with hierarchical relations.
For example, reading a bedtime story is composed of a sequence
of activities including choosing a book, reading the book, and
finishing the story with a good night kiss, coordinated through
a complex set of embodied vocal and attentional exchanges
(Sénéchal et al., 1995; Rossmanith et al., 2014; Flack et al., 2018);
walking emerges from tens of thousands of steps and hundreds

of failed attempts (Adolph et al., 2011; Adolph and Tamis-
Lemonda, 2014); a secure (or insecure relationship) is formed
by numerous interactions, play activities and conversations
spanning of days, months or even years (Granic and Patterson,
2006). In order to adequately describe and model the multi-
scaled nature of human behavior, we need hierarchical methods
that can identify or integrate shifts in activity across these
temporal scales, for example, to characterize how interaction
patterns change during joint activity over the first year (de
Barbaro et al., 2013; Rossmanith et al., 2014), or how micro-
dynamics of facial activity become organized in laughter vs.
crying (Messinger et al., 2012).

The last challenge is that changes in behavioral time series
are often non-linear (Carello and Moreno, 2005; Dale and Kello,
2018). We know that behaviors change over time, yet we often
ignore the fact that the rate of those changes may also vary from
time to time. Conventional statistical methods work under the
assumption that variations in the collected behavioral data are
stationary across time. However, this assumption does not hold
in a variety of complex environments and thus the results are
lost in the averaging process. For example, Tamis-LeMonda et al.
(2017) recorded the speech generated by the parents in a 45-min
session of child-parent naturalistic play session and calculated
the word-type over word-token ratio as a measure for speech
complexity. The word type token ratio was computed both over
the course of the entire play session and within each minute from
the start to end. The results showed large temporal fluctuation
both in raw speech quantity and word type token ratio over
the course of the play session. Parental speech is not uniform;
rather, the structure and complexity of the speech is dependent
on real-time play content. Aggregative methods, which assume
that changes in behaviors and interactions are stationary, are
thus likely to miss the true complexity of dynamic activity. As
more and more studies aim to discover important questions
in more naturalistic experimental settings, we need methods
that can reveal non-linear changes in human behaviors across
temporal scales.

Overall, it can be said that modern behavioral science
faces a “curse of dimensionality” (Bellman, 1961): multimodal,
high-density temporal datasets that are collected in relatively
unconstrained settings lead to an analysis overload. These vast
amounts of data have yet to be truly leveraged to their full
advantage (Aslin, 2012; Yu et al., 2012). Critically, there are
few if any domain-specific analytical tools that can characterize
high-density multimodal dynamics of human activities using
such emerging datasets. Indeed, the complexities of these
systems mean that no single tool will work to quantify the
complex behaviors and uncover intriguing patterns (Gnisci
et al., 2008). In this paper, we provide readers a practical
introduction to an ensemble of four analytic techniques to
characterize the temporal structure of high-density behavioral
data. Each technique is introduced in a module associated with
sample data and code available on Github, https://github.com/
findstructureintime/Time-Series-Analysis (Xu et al., 2020), as
well as conceptual material in the manuscript text, including an
explanation of the technique and its application to the showcase
example data provided in the code module.
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The techniques covered in the modules can be used to
characterize distinct aspects of the temporal structure of
behavioral data. The first module provides a step-by-step
“programming basics” tutorial that introduces users to common
behavioral timeseries data as well as scripts necessary to
import and manipulate these data. The goal is to provide
novice users the necessary scaffolding to begin to work with
behavioral timeseries data and make sense of the subsequent
modules. It also provides scripts for transforming data to
and from common data formats used across all modules
to facilitate modifying module material to work with user
data. The second module focuses on the visualization of raw
behavioral data. Visualizations allow researchers to observe the
rich dynamics of complex multimodal data across multiple
timescales, making structure in activity apparent where it may
not be theoretically prespecified. Visualizations can thus suggest
the most appropriate variables or analyses as part of a “human-
in-the-loop” analysis (Card et al., 1999; Shneiderman, 2002). The
third module introduces a way to describe the distributional
structure of temporal events: Burstiness calculation. This is a
method to quantify the temporal regularity of occurrence of
events (Goh and Barabási, 2008). The fourth module explains
Chromatic and Anisotropic Cross-Recurrence Quantification
Analysis which can be used to characterize coupled non-linear
dynamics over multiple timescales. These techniques can reveal
different types of recurrent behavioral patterns and can quantify
asymmetries in the coupling strength between two temporal
variables. The last module introduces Granger Causality as a
novel way to quantify the directional relations among multiple
behavioral time series. Multiple channels of behaviors are often
interdependent with each other. This technique provides a way
to investigate the unique influence from one behavioral time
series to another while taking all the variables in the system
into consideration.

In sum, the techniques introduced in this paper cover a
wide range of analysis needs for psychologists dealing with
time series data: from visualization to computational analysis;
from quantifying distributional regularities to discovering
underlying non-linear structures and synchronization patterns;
from describing the patterns within one behavioral time
series to computing the quantitative directional relations from
multimodal behavioral time series. Our goal is that both
beginner and experienced programmers will be able to selectively
benefit from the provided materials. Novice programmers
will benefit most from the modules if they carefully work
through the material in Modules 1 and 2 before attempting
to run or modify the later modules. More experienced
programmers can more selectively focus on the modules of
greatest interest to them, modifying scripts to meet their
own analysis goals.

All associated scripts can be run and edited using Matlab 2018a
and later versions available on Windows, macOS, and Linux
operating systems. While Matlab requires a paid subscription,
many institutions offer free access to this software. Readers
who are not familiar with Matlab are advised to reference the
Mathworks website where a complete list of free campus licenses
is available. Alternatively, readers can use the open source GNU

Octave (version 5.2.0 or later, which runs on GNU/Linux, macOS,
BSD, and Windows) to run and modify the scripts.

MODULE 1: TIME SERIES
PROGRAMMING BASICS

To make our modules accessible to novice programmers, the
first module provides a tutorial introducing novice programmers
to main temporal data types commonly collected in behavioral
science research and basic syntax useful for working with
multimodal temporal behavioral data. The module also walks
users through importing, manipulating and making simple plots
of timeseries data. The goal is to provide users with little
to no programming background with relevant programming
experience to begin working with their own temporal datasets.
While programming expertise is a continuous learning practice
that is never truly “complete,” these scripts can serve as a jumping
off point by which inexperienced readers can build the skills
and confidence necessary to understand and modify the scripts
in the subsequent modules to accommodate their own data and
research questions.

Additionally, this module provides scripts to transform
outputs of annotation software commonly used in developmental
science research, such as Elan, The Observer, or Mangold Interact
(Noldus, 1991; Wittenburg et al., 2006; Mangold, 2017) into data
formats compatible with all subsequent modules. These scripts
thus further enable novice programmers to apply subsequent
modules to their own data.

Methods
The most common types of temporal data collected in
developmental science research are event data and timeseries
data. Event data are those in which each event of interest is
indicated by an onset timestamp, an offset timestamp and a
third value that represents the behavioral code, i.e., looking at or
manipulating a certain target object. Event data are commonly
used when indicating discrete behaviors, including for example,
sequences of infant gaze or dyadic interaction states. Event
data could also include irregularly spaced data such as a list of
ecological momentary assessments, paired with the time they
are completed. Within the field of developmental science, event
data are often generated by human annotation (i.e., labeling)
of audio or video records. By contrast, timeseries data are data
points sampled at equally spaced intervals in time with a specified
sampling rate, such as 10 HZ which means 10 data points
are sampled at every 100 ms. Examples of common behavioral
timeseries data include frame-by-frame presence or absence of
mutual gaze between two interactors, positive or negative affect
state recorded every second throughout a 10-min play session
or observation of the presence of caregiver’s face in infant’s first
person view within every 5 s interval.

Binary spike train data is a specific type of timeseries data in
which a ‘1’ represents the onset of an event of interest and a ‘0’
represents instances when an onset did not occur (also known
as “point process data”). This type of time series data is used to
compute inter-onset intervals, i.e., the duration of time between
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the onset of consecutive events or to construct likelihood models
of an event’s occurrence.

Note that any event sequence data can be transformed into a
timeseries. Additionally, timeseries data can be transformed into
event data, although for continuous timeseries this may require
setting thresholds to “parse” the data into distinct events. Finally,
event data can be transformed to binary spike trains by including
only the onsets of the events in the binary spike train timeseries.
This is critical as some analyses require one data format rather
than the other. In particular, event data inputs are used in
Modules 1 and 2 (Visualization), timeseries data inputs are used
in Modules 1, 2 (Visualization) and 4 (Recurrence Quantification
Analysis), and binary spike train inputs are used in Modules 3
(Burstiness analysis) and 5 (Granger Causality).

Sample Data and Scripts
This module includes seven scripts as well as step-by-step tutorial
instructions in the readme.md.

Data
To introduce readers to timeseries and event data type, this
module includes samples of simple data from a study of the
development of joint activity, which examined frame-by-frame
annotations of all mother and infant gaze and touching behaviors
to a set of three available objects (de Barbaro et al., 2016b).
Additionally, it includes several sample files exported from the
annotation software Mangold (Mangold, 2017) that will be used
to practice data import and data format transformation. The files
contain multiple dimensions of data, including mother and infant
affect events. Users will also create visualizations with this sample
dataset in Module 2.

Scripts
The first script (programmingBasics.m) provides basics of data
file import and data manipulation, including accessing and
appending values into data arrays as well as calculating
basic features of behavioral temporal data. Two additional
scripts provide basics for plotting and modifying simple event
and timeseries data (timeseriesBasics.m and eventDataBasics.m).
These scripts allow users to view behavioral data with simple
plots and provide syntax for common modifications of color
and line specification and finishing touches for axes and titles.
They also introduce users to techniques for summarizing and
combining data streams, as well as “for loops” for cycling
through arrays. All three scripts are designed to be run one
line at a time, with scripted material designed to showcase
various types of manipulations and their outputs, as detailed
in the readme.md file and the inline documentation in scripts.
Additionally, the first two scripts contain practice problems
with solutions to challenge the user to begin independently
modifying scripts.

The fourth script guides the users through the process of
importing and transforming event-coded data from common
annotation software. Outputs from annotation software typically
contain both numerical and text data which are difficult to import
using common file read functions. The annotationImport.m
script provides code to transform outputs of annotation software
into a clean event-data format that can be easily manipulated

and accessed in Matlab and will be used in Module 2.
The fifth and sixth scripts, convertEvents2Timeseries.m and
convertTimeSeries2Events.m, offer codes to convert imported
event data sequences into timeseries format and timeseries
data into event format temporal data. Finally, the script
convertEvents2Binaryspikes.m can be used to convert event data
exported by the annotationImport.m function into binary spike
train data. These scripts thus allow researchers to more easily
transform their own input data for use in subsequent modules,
as well as other potential applications.

MODULE 2: GETTING TO KNOW YOUR
DATA: VISUALIZATION OF
HIGH-DENSITY MULTI-MODAL
INTERACTIONS

This module introduces more complex techniques for visualizing
behavioral data streams. With advances in video and sensing
technology, it is increasingly possible for researchers use high-
density multidimensional data to gain insight into the real-
time processes of behavior (de Barbaro, 2019). For example,
researchers interested in understanding of early emotion
regulation could annotate—or potentially automatically detect
markers of—frame-by-frame changes in mother and child affect,
gaze, and patterns of touching to examine real-time strategies
mothers utilize to regulate children’s distress and their impacts
on subsequent soothing (see, e.g., Ye et al., 2012; Kim and
Clements, 2015; de Barbaro et al., n.d.). These annotations
could be further synchronized with heart rate or electrical
brain signals (de Barbaro et al., 2017; Wass et al., 2019)
to examine concurrent physiological regulation, or to assess
whether individual differences in physiology might moderate the
impacts of mothers’ regulation efforts.

Data visualization can highlight the structure of such complex
behavioral processes within and between participants, providing
researchers key insights throughout the analytical process (Gnisci
et al., 2008). In early stages of analysis, visualizations of
raw or minimally processed data can provide insights into
underlying patterns and regularities. Critically, the novelty of
high-density multimodal datasets means social scientists have
limited vocabulary and insight into these data at such high levels
of granularity. In this case, summarizing data using prespecified
measures can be misleading, and has the potential to overlook
the most relevant or interesting features of the data. By providing
access to raw data for inspection, visualizations can highlight
temporal or multi-modal structure that may not be specified by
existing theory (Yu et al., 2012).

In later stages of analysis, data visualization can ensure
the validity and quality of operationalizations of phenomena
of interest, as well as help to interpret observed results.
For example, one useful approach for working with high-
density datasets is to identify repeated “events” occurring
within the data stream (de Barbaro et al., 2013; Granic and
Hollenstein, 2016). Such events can help to parse the unfolding
interaction into manageable and relevant instances of behavior.
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If events are derived from raw data, marking their position
within the timeline of raw data can help to ensure valid and
meaningful definition of event boundaries. Additionally, iterative
visualization of raw data with increasingly processed data can
indicate the density and temporal ordering of events relative to
other data streams, helping to guide the selection of relevant
analytic techniques.

Methods
Creating intuitive and meaningful visualizations involves a
number of methodological considerations. Collected temporal
data may include multiple channels, each representing a different
dimension or modality of behavior, each with potentially distinct
properties. For example, researchers may want to combine
multiple channels of temporal data representing behaviors
that are binary, such as the presence or absence of joint
gaze, with data that have many different mutually exclusive
categories, such as qualitatively distinct emotions or dyadic
states, or continuous data, such as physiological signals, or
affect levels ranked from more negative to more positive. Color,
positioning, and line style can be used to represent these different
types of activity to most intuitively highlight the structure
of multimodal behavior. For example, qualitatively distinct
activities may be better represented with different colors whereas
continuous affect may be best represented via a timeseries.
Alternatively, the structure of continuous affect data may be
best revealed by parsing continuous affect data into “positive,”
“negative,” and “neutral” categories. Ultimately, these decisions
are made through a mixture of theory, intuition, and simple
trial and error.

Overall, visualization of high-density multimodal data often
requires flexibility not present in off-the-shelf visualization
tools included with data collection or annotation software.
Scripting visualizations affords infinite control over these
decisions, ultimately allowing customizable exploration of data
structure. The current module thus showcases three sets of
scripts used to visualize complex multimodal data collected by
developmental scientists. The datasets span multi-participant
event data, physiological data synchronized with event data,
and multiple synchronized channels of physiological activity
from a wearable sensor. Finally, the scripts in this module
allow batch processing of multiple study participants, facilitating
within- and between-participant comparisons. We recommend
beginning with visualizations of 6–10 study participants to access
the structure and variability of your data, increasing this number
if saturation is not apparent.

Sample Data and Scripts
This module builds upon the basic data manipulation and
plotting techniques provided in Module 1 to provide readers
with experience visualizing more complex multimodal and multi-
participant behavioral data. The visualization module includes
sample data from three different datasets, three main scripts
including a demo script demo_visualizations, and a readme.md
file that provides instructions for running each script. The demo
script can be used to create a number of appealing plots of
high-density multimodal behavioral data.

Data
To provide users experience plotting a variety of different types
of data streams, three sample datasets are provided: (1) frame-by-
frame mother-and-infant affect data in a sample of mothers with
a history of depression (Lusby et al., 2014; Goodman et al., 2017),
(2) infant heart rate data collected over the course of a laboratory
session that includes attention and learning tasks presented on
a monitor (de Barbaro et al., 2016a, 2017) and (3) pilot data of
the author of the module wearing a wrist-mounted physiological
sensor that collects heart rate, electrodermal activity and motion
on a day that she gave a department seminar. To use these scripts
on their own data, users will need to have data formatted as
timeseries and/or events using the scripts annotationImport.m
and convertEvents2Timeseries.m in Module 1.

Scripts
The three scripts in this module provide the user with
practical visualization techniques for multimodal datasets. The
script multiParticipantEventPlotting.m plots three dimensions of
mother and infant affect into a single plot, distinguishing positive,
neutral, and negative affect via intuitive color and vertical
positioning. The plotTimeseriesWithEvents.m script combines
synchronized timeseries (infant heart rate) and event-data (tasks)
into a single plot to provide insight into potential relations
between infants’ activities and physiological changes. Finally,
the script plotSensorData.m script plots three different types of
wearable physiological data in three plots on a single figure, to
indicate the temporal relations between these measures. This
script processes Unix timestamps, a specialized time format
commonly used by sensor platforms.

Results
To provide examples of the types of insights that visualizations
can provide, we will walk through the figures generated
by the scripts multiParticipantEventPlotting.m (Figure 1) and
plotTimeseriesWithEvents.m (Figure 2).

Figure 1 displays approximately 150 s worth of dynamic affect
data from two mother–infant dyads participating in a face-to-
face free play session at 3 months of age. While the color and
positioning parameters of this image could be arbitrarily changed,
setting these parameters in an intuitive way can greatly facilitate
the comprehension of your plots (Tufte, 2001). In this example,
higher position on the y-axis corresponds to more positive affect,
the color red indicates distress, and colors are consistent across
mother and infant affect states. Additionally, the simple black
lines (“kebab lines”) help to orient the observer to where data
could be present. Finally, setting the width and height of the
bars such that that each dimension of mother and infant affect
is “touching” highlights potential contingency between mother
and infant affect.

Organized in this way, the plots highlight salient aspects
of interaction that can be examined further in systematic
analyses. First, in both dyads we observe that both mothers and
infants’ cycle between different affect states across the session.
Additionally, there appear to be many instances of contingent
affect shifts between mothers and their infants. Note, for example,
that each shift in affect displayed by the mother in dyad 3532
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FIGURE 1 | Affect data from two mother–infant dyads participating in a face-to-face free play session at 3 months of age. The x-axis shows time (in seconds) and
the y-axis distinguishes different dimensions of affect. Maternal affect is represented in three rows at the top (A), infant affect is represented in three lower rows (B).
For both mothers and infants, the highest of the three rows (in blue) represent positive affect, the middle row (in black) represents neutral affect, and the bottom row
(in red) represents negative affect.

(Figure 1B) appears to be contingent on a shift in infants’ affect.
Perhaps most strikingly, we observe strong differences in the
expression of negative affect between the two infants, such that
one infant displays less than 10 s of negative affect while the
other displays nearly 10 times that. Visualizations of additional
participants (not shown) indicated high levels of infant negative
affect expression in 10–20% of mother–infant interactions. This
led us to consider that there was large variation in the challenge
faced by mothers in responding contingently to their infants
which may moderate the relations between contingent affect
responding and infants’ affect development longitudinally. It
also led us to wonder whether patterns of maternal activity
were contributing to these variations in infant affect, given that
caregiver sensitivity is often associated with infant negative affect
expression. We are exploring these questions in ongoing research
(de Barbaro et al., 2020).

Figure 2 displays approximately 25–30 min of two 12-month-
old infants’ heart rate data as they participate in different
tasks during a laboratory session. Together, the plots highlight
individual differences in infant heart-rate reactivity as well as
the presence of task-associated changes in heart rate. Differences
in heart rate reactivity appear stable within each infant across
tasks, i.e., Figure 2A consistently shows strong responses to
tasks with increases in heart rate ranging from 20to 80, while
Figure 2B shows much more moderate task-associated increases
in heart rate, with heart rate typically increasing by 20–30 beats
from task onset.

Neither infant shows noticeable session-level effects, that is,
heart rate increases are generally followed by a return to some
sort of “baseline.” However, where there is a gap between tasks
(e.g., between 1,000 and 1,600 s for Figure 2A), both infants heart
rate is meaningfully lower and more stable, again suggesting that
the tasks themselves are arousing or potentially stressful for the
infants. Finally, the stretch of low heart rate in both infants at the
start of the task, encompassing the “chan hop” and “smiling baby”
tasks, suggested that this segment of the session might function
as a valid baseline. We followed up on the generated insights

in multiple manuscripts. For example, we examined individual
differences in heart rate reactivity to the visual paired comparison
(VPC; habituation) task and their association with performance
on this task (de Barbaro et al., 2016a). We also examined how
the changes in heart rate across the session were associated with
changes in attention as assessed by eye-tracker gaze duration (not
plotted here; see de Barbaro et al., 2017).

Discussion
As Bakeman and Quera (2011) note, sequential analyses are not
“off the shelf.” No single analytic tool can characterize dense,
multi-channel behavior dynamics of social interaction. Instead,
investigators should anticipate an iterative process to converge
on the analytic tools that will capture the temporal structure of
their data (de Barbaro et al., 2013). Visualizations of high-density
behavioral data can prove critical in this process. In particular,
data visualized in an intuitive way can highlight salient aspects of
the temporal structure of activity and thereby guide the selection
of relevant analytic techniques.

MODULE 3: TAPPING INTO THE
TEMPORAL STRUCTURE OF
DEVELOPMENTAL DATA USING
BURSTINESS ANALYSIS

In this section, we will introduce methodological advancements
for how developmental scientists can apply simple distributional
analyses to time series data to estimate the temporal structure
of event-level datasets. The burstiness analysis can be useful for
psychologists interested in studying the temporal patterns of
behavior. For example, the ability to quantify and/or categorize
temporal patterns of behavior using a simple metric, can lead
to generating and testing hypotheses about how a particular
behavior unfolds over time. This analysis, first introduced
in statistical physics (Goh and Barabási, 2008), characterizes
spike trains of human behavior in the dimension of burstiness
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FIGURE 2 | (A,B) illustrate the beat-by-beat heart rate data (indicated by + symbols) of two infants participating in various tasks over the course of a laboratory
session. The x-axis shows time (in seconds) and the y-axis specifies the heart rate values in equivalent beats-per-minute. The colorful line at the top represent the
specific tasks infants participated in, differentiated by color and labels. The boundaries of each segment indicate the start and stop times of each task.

of the spike train of interest. Burstiness is a distributional
measure that provides an estimate of a system’s activity
patterns spanning from periodic (−1 < B < 0), to random
(B ∼ 0), to theoretically maximal burstiness (0 < B < 1)
(see Figure 3).

Methods
As noted above, the analysis requires the user to have a binary
spike train of 0 s and 1s in which a ‘1’ represents the onset
of an event of interest and a ‘0’ represents instances when an
onset did not occur. Inter-onset intervals are computed from the
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FIGURE 3 | Toy examples of spike trains that approximate periodic, Poisson,
and bursty temporal structure.

binary spike train and then the inter-onset interval distribution
is submitted to an estimation of burstiness. A simple equation
provides an estimation of burstiness with the assumption of an
infinite time series,

B =
στ−µτ

στ+µτ

where στ is the standard deviation of the inter-onset interval
distribution and µτ is the mean of the inter-onset interval
distribution. A recent addition to the burstiness analysis includes
an updated equation that takes into account the amount of inter-
onset intervals in a distribution and therefore is more relevant
for empirical work using finite time series (Kim and Jo, 2016).
Estimates from both equations converge when the inter-onset
interval distributions include τlength > 100 intervals.

Sample Data and Scripts
The burstiness module contains two samples of data, two scripts
including a demo file that quantifies and visualizes burstiness
across different data streams, and a readme.md file that provides
step-by-step instructions for running the scripts.

Data
Example data come from a randomly selected subject in a
developmental study where ego-centric views were collected at
a sample rate of 1/5 Hz in infant’s natural environments (see
Jayaraman et al., 2015, 2017; Fausey et al., 2016; Jayaraman and
Smith, 2019). Human coders coded each frame for the presence
of hands or faces in the field of view. Sample data include two
spike train series, one for when a hand came into view and
one for when a face came into view. To use this script on their
own data, users will need to have data formatted as binary spike
trains, which they can do using the convertEvents2Binaryspikes.m
script in Module 1. Additionally, the user should be aware of
the sampling rate that was used to collect and process the data
as this will constrain interpretations of the magnitudes of inter-
onset intervals.

Scripts
The demo script demo_bursty.m calculates the burstiness of the
two example spike trains. It also generates a periodic spike train
and a random spike train generated from a Poisson process
and calculates the burstiness of those data streams to provide a
comparison for the burstiness values of the sample data. Finally,
it generates a plot (Figure 4) to provide a visual comparison of the

burstiness of each spike train as well as a distribution of the inter-
onset intervals of the sample data streams. Additional details are
provided in the script in-line documentation.

Results
The results from the demo_bursty script are shown in Figure 4.
The first two images display the distribution of inter-onset-
intervals of the two sample data streams. The IOI distribution
for a periodic signal (B < 0) would indicate high counts of IOIs
at one particular timescale, e.g., a high amount of IOIs with
length = 10 s. By contrast, an IOI distribution for a bursty signal
(B > 0) is typically right-skewed, suggesting a high frequency
of short IOIs and less-frequent (but non-zero) amount of longer
IOIs. Estimates of Burstiness, B, are indicated along the y-axis of
the right-most image in the plot. The x-axis is a measure of the
memory of the event series which is commonly estimated by the
lag-1 autocorrelation coefficient. Due to the introductory nature
of this module, we won’t discuss the concept of memory in detail
here, please see Goh and Barabási (2008) for a comprehensive
explanation. Note that the Burstiness values of the empirical
spike trains are both positive, meaning they are both in the
‘bursty’ regime as opposed to the ‘random’ or ‘periodic’ regime:
B = 0.22 for the Face spike train and B = 0.36 for the Hand spike
train. The two burstiness estimates suggest that bouts of hand
activity are more clustered in time and have longer periods of
time when hand activity was not occurring relative to bouts of
face activity. Observing that the hand events are more bursty
than the face events also suggests that bouts of manual activity
are likely occurring at faster timescales compared to face events
coming in and out of the infant’s view. Moreover, observing that
both the hand events and face events are not organized in a
periodic or random temporal structure suggests a more complex
collection of constraints acting on the two information sources,
such as social interactions, toy play, etc. Finally, the burstiness
estimate of the randomly distributed events is approximately
0 and the burstiness of events generated from the periodic
distribution is slightly less than −1, as would be expected of
these distributions.

Discussion
The burstiness analysis affords the researcher with the ability to
provide a simple index of the temporal structure of an event
of interest. One critical limitation of the application of the
burstiness analysis to a wide range of behavioral event series
is the relative magnitude of the B estimate across datasets.
This limitation suggests that the user should use caution when
directly comparing B estimates across datasets. One strategy that
has been used in recent research that applied the burstiness
analysis to multimodal human interaction (Abney et al., 2018),
was to generate bootstrapped confidence intervals to determine
categorical boundaries of periodic, random, and bursty temporal
structure. For example, a Poisson process is generated by an
interevent interval distribution of an exponential distribution.
Therefore, a researcher can generate confidence intervals by
first simulating a sample of interevent interval distributions
with similar properties to the empirical dataset (e.g., average
size of interevent interval distribution) but from an exponential
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FIGURE 4 | (A) Inter-onset Interval Distribution for hand events, (B) Inter-onset Interval Distribution for face events. An IOI distribution for a periodic signal (B < 0), the
user would observe high counts of IOIs in one particular timescale, e.g., a high amount of IOIs with length = 10 s. An IOI distribution for a bursty signal (B > 0) is
typically right-skewed, suggesting a high frequency of short IOIs and less-frequent (but non-zero) amount of longer IOIs. (C) Burstiness-Memory plot. On the x-axis is
a measure of the memory of the event series which is commonly estimated by the lag-1 autocorrelation coefficient.

distribution and then estimate the lower and upper bound of
the confidence intervals of what the burstiness analysis would
suggest would be as Poisson (B ∼ 0). Generating bootstrapped
confidence intervals of the lower and upper bounds of what
the burstiness analysis would classify as ‘Poisson’ can allow a
researcher to then classify empirical spike trains with known
burstiness values. Although this strategy allows the researcher
to classify behavioral events into intuitive categories of temporal
structure, the main limitation of this strategy is that classification
does not afford the researcher to develop, test, and reject
hypotheses about the magnitude of B estimates and cognitive
mechanisms. Despite the important limitations the user should
consider, the burstiness analysis provides a simple metric
that can inform researchers about the temporal structure of
behaviors of interest.

MODULE 4: CROSS-RECURRENCE
QUANTIFICATION ANALYSIS OF DYADIC
INTERACTION

The techniques introduced in this section are variations of
Recurrence Quantification Analysis (RQA) (Marwan et al., 2007),
which is a powerful non-linear time-series technique originating
from the natural sciences, and which has gained popularity in
the social sciences in the past two decades. RQA can be applied
to data of a continuous and nominal measurement level, and
to a single data stream as well as to a pair of data streams.
The latter version of the technique is called Cross-Recurrence
Quantification Analysis (CRQA) (Shockley et al., 2002). In this
module we will focus on two recent advancements for nominal
data streams, known as Chromatic CRQA and Anisotropic
CRQA (Cox et al., 2016), which are particularly suited for the
analysis of differentiation and asymmetry in dyadic interaction.
This choice is given by two observations: the first is that many

datasets in psychology originate from annotations of audio or
video recordings, from manual or automated registration of gaze
across regions of interest (ROI), or from a comparable procedure
resulting in temporally ordered sequences of distinct behavioral
categories (i.e., nominal event or time-series data). The second
is that many research questions pertain to social interaction,
in which a number of people, typically a dyad, are engaged in
some form of interpersonal behavior, for instance, two children
collaborating on a task (Guevara et al., 2017) or a mother–infant
feeding interaction (van Dijk et al., 2018).

CRQA enables researchers to study attunement and
coordination in such dyads. Dyadic interaction typically
consists of recurrent patterns of several types of matching and
non-matching (i.e., collective) behaviors of the interaction
partners. These patterns can be of various duration and are
potentially coupled across different episodes of the interaction.
That is, interaction partners might influence each other’s
behavior (almost) immediately, but this influence might also be
delayed for some shorter or longer period of time. Also, dyadic
attunement is sometimes brief and consists of only a single
behavioral category, but it might also be a lengthier behavioral
sequence consisting of several different categories. CRQA
detects such behavioral patterns and quantifies their dynamic
characteristics and temporal associations. In addition, one may
wish to track the different types collective behaviors of the dyad
separately, and weigh the relative contribution of each of the
interaction partners to the recurrent patterns. Chromatic and
Anisotropic CRQA facilitate this. It can reveal temporal structure
in data streams across different timescales, which remains
inaccessible to most other time-series methods. There are several
good texts explaining CRQA for continuous and nominal time
series emphasizing conceptual issues and applications (Webber
and Zbilut, 2005; Marwan et al., 2007; Wijnants et al., 2012b).
In the following sub-sections, we will introduce the technical
underpinnings of Chromatic and Anisotropic CRQA, detail
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the key scripts in our code modules, and explain the derived
measures and the features of Chromatic and Anisotropic CRQA
with an example.

Methods
The central feature of CRQA is the Cross-Recurrence Plot (CRP;
Figure 5), which visualizes the temporal organization of the
interaction based on ‘recurrences.’ What counts as a recurrence
is pre-defined by the researcher, and in its most general form
it can be any matching pair of individual behaviors of the
two interaction partners (e.g., shared gaze, both lifting, as well
as complementary “matches” such as speak-silence, offering-
accepting). For nominal data a CRP is easily constructed by
tracking such behavioral matches across the entire lengths (N)
of the two data streams. By holding one of the data streams
along the horizontal axis and the other along the vertical axis,
the occurrences of behavioral matches are plotted in the two-
dimensional CRP with N rows ad N columns. Each dot in
the CRP represent the instance where a behavioral state of
the horizontally presented interaction partner is matched in
a specific way by that of the vertically presented one. When
several different types of behavioral matches (i.e., qualitatively
different combinations of behavioral categories) need to be
tracked simultaneously, this can be represented in the CRP
with a color coding. This is represented in Figure 5, where
you can see two colors, representing two types of behavioral
match (the white areas are the remaining non-matching states).
This version of the method is called Chromatic CRQA (see
Cox et al., 2016).

The distribution of the dots across the CRP captures the
interactional dynamics, and several measures can be derived to
quantify this. The simplest measure is the recurrence rate (RR),
which is the proportion of behavioral matches. RR provides
a crude measure of coordination between the two interaction
partners across multiple timescales. Note that individual dots are
no longer visible in Figure 5, because they tend to constitute
smaller and larger rectangular patterns. These are quite common
in a CRP of nominal data coming from dyadic interaction,
and reflect both a persistence in the interaction as well as the
coarse-grained nature of the measurement (Cox et al., 2016; Xu
and Yu, 2016). A rectangular pattern indicates an episode of
behavioral-category use of one interaction partner which was
accompanied by some episode of matching behavioral-category
use of the other interaction partner. The more asymmetric
the pattern, the briefer the matching behavior is performed
by one interaction partner compared to the other. The overall
asymmetry (or rather: anisotropy) in the CRP is therefore related
to asymmetries in the dynamics, and provides information about
differences in the relative contribution and dominance between
the interaction partners.

Given the rectangular structure and the possible anisotropy
of the CRP, it makes sense to quantify the horizontal and
vertical extent of the behavioral patterns separately and analyze
the differences between the two orientations. This version of
the method is called Anisotropic CRQA (Cox et al., 2016). The
CRQA measures in the CRQA module quantify the proportion
of patterns, their mean and maximum length, and their entropy,

for both orientations. Specifically the measures are: (1) LAM
(Laminarity), which is the proportion of matches constituting
patterns in the vertical and horizontal orientation, (2) TT
(Trapping Time), which is the average length of vertical and
horizontal patterns, (3) Max_L, which is the length of the
longest vertical and horizontal pattern, and (4) Ent_L, which
is the Shannon entropy of vertical and horizontal length
distribution. Note that each of these measures can be calculated
for every type of behavioral match (i.e., color in the CRP)
separately. Given the introductory nature of this module, the
four measures we covered in this module are a subset of
CRQA measures. This subset of measures are chosen since
they are among the most widely used CRQA measures by
studies from various disciplines (Fusaroli et al., 2014). They
are especially relevant for the analysis of nominal data streams
of dyadic interaction (as argued in Cox et al., 2016), which
are often collected in developmental studies. For additional
measures and software to calculate them, please see (Webber
and Zbilut, 2005; Marwan et al., 2007; Coco and Dale, 2014;
Hasselman, 2018).

Sample Data and Scripts
The CRQA module contains a readme.md file, an example
dataset, and six MATLAB scripts, including a demo function
demo_CRQA.m. These materials will enable users with little to
no programming experience to plot the data and perform simple
Chromatic and Anisotropic CRQA.

Data
The example dataset example_data.mat consists of two nominal
time series, PP1 and PP2, of equal length (1,630 time steps), each
containing integer values from 1 to 5. The time series come from
a dyadic interaction study, in which the collaborative behaviors of
two children were coded from video, at 1 Hz, by using the same
five specific behavioral categories for each (for more details see
Guevara et al., 2017). To use this script on their own data, users
will need to have data formatted as timeseries, which they can do
using the convertEvents2timeseries.m script in Module 1.

Scripts
The function demo_CRQA.m loads the example data and runs
the entire set of functions of the module. The function tt.m
in the folder lib is part of the crp toolbox available at http:
//www.recurrence-plot.tk, and computes the distributions of
lengths of the vertical and horizontal line structures in the CRP.
Based on these two distributions, the orientation-specific CRQA
measures (LAM, TT, Max_L, and Ent_L) are calculated. The
CRQA module can be performed directly on the example dataset,
but with a few modifications of the scripts also on the user’s own
nominal dataset.

The function PlotTS.m visualizes the two time series. This
opens a figure window showing two plots, each of which
displays the behavioral stream of one of the interaction partners
(Figure 5). The function CatCRMatrix.m creates a cross-
recurrence matrix rec of the two time series. Two types of
behavioral matches are distinguished in this analysis: ‘distributed
dyadic interaction’ (DDI) and ‘unequal dyadic interaction’ (UDI).
In DDI both children were actively engaged with the task and
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FIGURE 5 | Two nominal time series (example_data.mat), each of which reflects the stream of collaborative behaviors of a child during a dyadic interaction, coded by
using the same five specific behavioral categories (1–5) for each.

contributed to the solution, whereas in UDI only one child was
contributing to the solution while the other child was not (see
Guevara et al., 2017 for more details). All other combinations
of individual behaviors are considered to be non-matching, and
were labeled ‘no dyadic interaction’ (NDI). Different values in the
matrix rec correspond to different types of behavioral matches,
+1 for DDI and −1 for UDI, whereas NDI receives the value
0. The function PlotCRP.m plots the Chromatic CRP, based
in the matrix rec (see Figure 6). The function CRQA_out.m
performs Chromatic and Anisotropic CRQA using the matrix
rec. Chromatic CRQA calculates the recurrence rate (RR) for
both types of behavioral matches. The function provides RR both
as a proportion of the total number of points in the CRP (i.e.,
canonical recurrence rate), as well as a proportion of the total
number of behavioral matches (i.e., relative recurrence rate).
These values are written to the matrix Chromatic_CRQA in the
Workspace (Table 1). Anisotropic CRQA quantifies both the
vertical and horizontal patterns. As said, the quantitative analysis
will ignore the different types of behavioral matches for now,
treating them as equal. The orientation-specific CRQA measures
are written to the matrix Anisotropic_CRQA in the Workspace
(Table 2). The upper row in Anisotropic_CRQA gives the values
for the vertical line structures, the lower row those for the
horizontal line structures.

Results
Figure 6 displays a colored checkerboard pattern typical for
Chromatic CRQA with nominal data. There are three colors
in this CRP representing the three different types of states
of the dyad, based on the numerical values in rec: red for
DDI (value +1), blue for UDI (value −1), and white for

FIGURE 6 | Cross-recurrence plot of the nominal time series shown in
Figure 4, by applying Chromatic CRQA. The three colors represent three
different types of collaborative states of the dyad. (For details see text).

NDI (value 0). All together the CRP nicely displays the rich
coordinative structure of the collaborative interaction, across
all possible timescales, in terms of the pre-defined behavioral
matches. The values in Chromatic_CRQA show differences in the
recurrence rate for DDI and UDI. Specifically, the recurrence
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TABLE 1 | Canonical Recurrence Rate (RR) and relative Recurrence Rate (rRR) for
both types of behavioral match after Chromatic CRQA.

Matching type RR rRR

DDI (red) 0.31 0.46

UDI (blue) 0.36 0.54

TABLE 2 | CRQA measures of the horizontal and vertical patterns after
Anisotropic CRQA.

Patterns LAM TT Max_L Ent_L

Vertical 1.00 104 453 3.05

Horizontal 1.00 98 482 3.05

rate for UDI is slightly higher than for DDI. This means that
UDI is the dominant attractor state, implying that the unequal
dyadic interactions were more prominent than the distributed
dyadic interactions, in this particular interaction. The values
in Anisotropic_CRQA (Table 2) quantify the patterns of the
vertical and horizontal line structures displayed in the Figure.
Notably, we see small differences between some of the CRQA
measures for the horizontal and vertical patterns, reflecting a
small anisotropy in the CRP. LAM is equal to 1 for both
orientations, which means that all recurrences are part of a
horizontal pattern as well as a vertical pattern (of at least
length 2). In general terms this means that the collaborative
behavior is quite patterned. TT is slightly higher in the vertical
direction than in the horizontal direction. This is reversed for
Max_L. This is also somewhat visible in Figure 5. Finally,
there is no difference between Ent_L for both orientations.
Overall, these results indicate an asymmetry in the dynamics of
this interaction, suggesting slight differences in the behavioral
dominance between the two collaborating children. These results
are investigated further in Guevara et al. (2017).

Discussion
Although the asymmetry in the example data is relatively small,
additional examples of the explanatory and predictive value of
Chromatic and Anisotropic CRQA are available in the literature
(e.g., De Jonge-Hoekstra et al., 2016; Guevara et al., 2017;
López-Pérez et al., 2017; Nonaka and Goldfield, 2018; Menninga
et al., 2019; Gampe et al., 2020). For reasons of simplicity the
module materials do not allow users to assess the quantitative
recurrence metrics for different types of behavioral matches (i.e.,
the different colors displayed in the CRP). Chromatic CRQA on
nominal data can result in a large number of measures. That is,
for each behavioral match included in the analysis there is an
additional set of measures. This even becomes almost twice as
large when quantifying the line structures for both orientations in
the CRP, as is done in Anisotropic CRQA. However, the relative
differences of the anisotropic CRQA measures can quantify
relevant asymmetries in the dyadic dynamics and the differences
in coupling strength between two interaction partners (see, e.g.,
Cox et al., 2016) and thus provides a valuable addition to toolbox
of the high-density behavioral analyses.

MODULE 5: DISCOVERING
DIRECTIONAL INFLUENCE AMONG
MULTIMODAL BEHAVIORAL VARIABLES
WITH GRANGER CAUSALITY

In this section, we will introduce Granger Causality (GC), a
method to quantify the directional influences among a set of
interdependent behavioral variables. Wiener–Granger Causality
is a statistical notion of causality based on computing the
improved prediction from one time series to another (Granger,
1969; Bressler and Seth, 2011). Consider an infant–parent toy-
play interaction as a concrete example. In this interaction,
multiple behavioral cues from both the infant and the parent are
influencing each other at the same time. GC could be used to
examine the directional influence from one specific behavior to
another in this multimodal interaction. For example, with GC
we can compute whether a parent talking about a toy increases
the likelihood of the child looking at that same toy in real time,
above and beyond all the other behavioral variables observed in
this social interaction.

Originally developed in the context of econometric theory,
GC gained popularity within the field of neuroscience as a non-
invasive technique for inferring relations in between different
sources of neural activity (Roebroeck et al., 2005; Vakorin et al.,
2007; Chang et al., 2008; David et al., 2008; Nedungadi et al.,
2009). Recently, GC has also been used in behavioral research.
For example, it has been used to examine the early development
of vocal turn-taking between marmoset monkey infants and
parents (Takahashi et al., 2016), to quantify leader and follower
dynamics in joint music performance (Chang et al., 2017) and
to examine the development of coordinated behaviors in infant–
parent interaction (Xu et al., 2017). In the following subsections,
we explain the conceptual foundation of this technique and then
demonstrate how to calculate and interpret the results with an
empirical example from an infant–parent interaction study.

Methods
Wiener (1956) provided the conceptual basis of Granger
causality, namely, the idea that the variable X could be said
to cause Y if the ability to predict Y can be improved by
incorporating the information contained in X. Granger (1969)
formalized this notion of causality in the domain of time series
signals based on multivariate autoregressive (MVAR) models.
The basic idea of MVAR is quite simple: the past can predict the
future. For example, the behavior of a complex system H at time
T + 1 can be modeled by its past observed behaviors or values
from T − p to T. Granger causality can be described within this
example as follows. Suppose that X and Y are two interdependent
processes in this system H and we want to predict the future of
Y. First, we predict Y ’s value at time T+1, i.e., YT+1, using all
the available information in the system H from time T − p to T,
including its own past values (i.e., its history) and the history of X.
Next, we calculate a second prediction for YT+1, this time using
all the available information in the system H from time T − p
to T, including its own history, but this time, excluding the past
values of X. If YT+1 is better predicted in the model that includes
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the past values of X, this means that past values of X contain
unique information that helps to predict Y above and beyond the
information contained in the history of all the other variables, Y
itself included. In this case, X is said to Granger-cause Y.

Currently, GC can be applied to time series with continuous
values or binary spike trains (see Figure 3) introduced in Modules
1 and 2. Binary spike trains are used to indicate whether or not
a given activity, such as a neuron firing or a child’s babbling is
observed during a sampling period. The MVGC Matlab Toolbox
developed by Barnett and Seth is widely used for computing
GC among time series with continuous values. Barnett and
Seth (2014) offers a comprehensive tutorial covering both the
mathematical foundation of the GC’s computational process and
the usage of the MVGC toolbox. For this reason, this module
focuses on the computation of GC within discrete binary spike
train data based on the framework and toolbox developed by Kim
et al. (2011).

For discrete binary spike trains or point processes, the
likelihood of an event occurring is modeled by a Generalized
Linear Model (GLM): a linear combination of this temporal
variable’s dependency to the history of each individual element
in the ensemble. The GLM framework allows researchers to
calculate the statistical significance of the GC relationship
using the likelihood ratio test statistic. These goodness-of-fit
statistics can be calculated by comparing the deviance between
the estimated model with trigger variable X excluded and the
estimated full model in the GLM framework. Additionally, a
multiple hypothesis testing error measure, the false discovery
rate (FDR) (Benjamini and Hochberg, 1995; Storey, 2002) can
be used to assess the expected proportion of FDR when the
number of hypothesis tests and thus the number of rejected null
hypotheses is large.

Sample Data and Scripts
The fifth code module contains all the Matlab functions involved
in the calculation of GC and its significance, two sample data
files, a demo file, demo_granger_causality.m, which demonstrates
all steps of GC calculation with the provided data, and a
readme.md file, which provides detailed instructions on how to
use the scripts.

Data
Our example dataset includes multimodal behavioral streams
collected from an infant–parent toy-play experiment. Infant
and parent dyads participated in a toy-play experiment when
the infant was 9- and 12-months old. During each visit, the
dyads were instructed to play with three single colored toys
as they would if they were playing at home. Both participants
wore head-mounted eye-trackers to record their eye movements
(Franchak et al., 2011) and their first-person view of the play
episode. An additional birds-eye camera captured their manual
activities from above. The parent’s speech was also recorded. After
the experiment, eye-tracking data, video recordings and speech
recordings were synchronized and calibrated. Trained coders
provided frame-by-frame annotations indicating all instances
of parents and infants gaze and manual contact with each of
the three objects (Slone et al., 2018). Three ROI were used

for all the behavioral streams: the three toys. In addition,
we transcribed the parent’s speech data, and identified all
instances during which an object’s name was referenced and
marked those naming events with ROI values as well. In
summary, we collected five behavioral time series: infant gaze,
infant manual activity, parent gaze, parent manual activity,
and parent speech.

To convert our behavioral data streams into multivariate
spike train data, all data streams were divided into three groups
according to each object, i.e., the ROIs. Next, at every 333 ms
interval we re-sampled the behavioral streams to see if each
behavior was present during the interval. For example, if the
infant looked to the red object during a given sample unit,
this section was marked 1; if not, 0. After resampling, the
behavioral streams were transformed into spike trains. Figure 7A
shows a portion of visualized raw behavioral streams from our
sample dataset. Data file gcause_sample_data1.mat contains the
behavioral streams collected from the example dyad when the
infant was 9 months; file gcause_sample_data2.mat contains
the behavioral streams collected from the same dyad when
the infant was 12 months. To use this script on their own
data, users will need to have data formatted as binary spike
trains, which they can do using the convertEvents2Binaryspikes.m
script in Module 1.

Scripts
The demo script demo_granger_causality.m, loads one of the
sample datasets, visualizes the behavioral time series in a plot
(see Figure 7A for an example), performs GC computation and
displays the results in an easily interpretable format. The key
function for computing GC and conducting significance test is
calculate_granger_causality() which is located in the lib/folder.
This function takes two input parameters: data_matrix and
glm_time_range. The first parameter, data_matrix, contains the
time series data that will be used to perform GC computation.
The second parameter, glm_time_range, is the length of the
history window that will be used for prediction model fitting
in GC computation.

In the calculation, the function calculate_granger_causality()
will first generate a set of likelihood estimation models for
each time series contained in data_matrix by iterating through
history window durations from 1 to glm_time_range. The best
estimation will be chosen from this set of candidate models using
Akaike’s information criterion (AIC) (Akaike, 1974; Burnham
and Anderson, 1998). Next, the function will calculate GC from
between every pair of variables. For example, in order to calculate
the extent to which the infant looking at the red object uniquely
improves the occurrence of the parent also looking at the red
object, the function constructs two models: (1) the full model: the
likelihood of parent’s looking behavior is modeled based on the
recent history of all five variables in our system; (2) the partial
model: the function excludes infant’s looking variable from the
model and calculates an estimate of the parent’s looking behavior
based on the other four variables alone.

The results are returned in the output results_gcause_mat.
The magnitude indicates the strength of the GC influence:
higher value means stronger influence. The second return
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FIGURE 7 | (A) An example multimodal temporal dataset collected from an infant–parent interaction study with five behavioral variables: infant gaze behavior, infant
manual action, parent gaze behavior, parent manual action and parent speech events with object names. The colors indicate the target object of each behavior.
(B,C) Granger causality results computed among five behavioral time series for an example dyad at 9 and 12 months.

value results_gcause_fdr contains the significance test result
for every directional GC influence. The significance test
can result in three outputs: 1, −1, or 0. An output of 1
means that there is a significantly positive GC directional
influence between the indicated pair of variables; −1 means
that there is a significant negative GC influence; and a
0 value means the influence is not significant. Lastly, the
function prettyprint_gcause_result() will print out the quantified
directional links among each pair of variables in an easily readable
format in the console.

Results
Figures 7B,C shows the Granger Causality results among
five behavioral variables for one example dyad at 9 and
12 months. With five behavioral time series, we computed
twenty different types of directional links between each pair
of variables. Figure 7B shows a visualized graph illustrating
the computed Granger causality links among five behavioral
variables of the example dyad when the infant was 9-months
old; Figure 7C shows the computed result of the same dyad
at 12 months. In the Figure, red links indicate the significantly
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positive links with number near the arrow of each link
representing the G-cause value. In this example, at both ages,
this dyad shows a significantly positive link from the parent’s
manual action to infant’s looking behavior. This means that
the occurrence of parent’s holding a certain object significantly
increases the likelihood of the infant looking at the same
object, i.e., parent’s manual actions Granger caused infant’s
looking behavior in infant–parent interactions when the infant
was 9 and 12 months. Note that the influence from parent
to child increases across this developmental period. We can
also see that influences between infant modalities also increase
between 9 and 12 months. Thus, using GC techniques, we
observed developmental changes in the directional influences
between parent and child multimodal (gaze hand and parent
speech) activity.

Discussion
The fact that Granger Causality accommodates stochastic
processes and makes only general assumptions about the
collected data means it is particularly well-suited for behavioral
scientists who collect multiple dimensions of behavior each
mutually influencing one another. However, we note a number
of limitations of this technique. First, it currently lacks the
flexibility for behavioral data collected from trials with different
lengths. Second, the trigger variable must occur before the
effect variable in the behavioral data coding in order to be
featured as a predictor in the GC computational process.
Methods of data recording or coding that lack precise temporal
accuracy may thus obscure “granger-causes.’ Finally, while
behaviors and their mutual influences can be non-linear, the
current modeling process is based on a linear assumption: all
causal influences remain constant in direction throughout time
(Granger, 1988; Sugihara et al., 2012; Maziarz, 2015). Addressing
these limitations would enhance the application of GC to
complex behavioral data.

OVERALL DISCUSSION

From Lashley (1951) to Elman (1990) and Kolodny and
Edelman (2015), understanding the temporal structure of
human behavior has been recognized as one of the most
fundamental problems in psychology. Recently, advances in
technology have allowed us to collect large datasets of high-
density behavioral streams in naturalistic scenarios (de Barbaro,
2019). This has enabled researchers to capture the temporal
dynamics of behavior at a fine temporal scale. Additionally, it
has created novel analytical challenges for modern psychologists.
To tackle these challenges, we provide introductions and
scripts for a range of complementary analysis techniques.
For the novice programmer, we provide a guide to the
basic functions required for time series analysis (Module 1).
Data visualization techniques introduced in Module 2 allow
users to create flexible and customizable plots of raw and
processed behavioral data streams to provide insight into
structure and variability of behavior within and between
participants. In the third module, we introduce Burstiness

calculations to describe the overall distributional structure and
quantify the occurrence regularities of temporal events. In the
fourth module, we explain Chromatic and Anisotropic Cross-
Recurrence Quantification Analysis, which quantify non-linear
dynamics across multiple timescales. These methods can track
different types of recurrent behavioral patterns within dyadic
interaction and can quantify asymmetries in the dominance
between interaction partners. Finally, we introduce Granger
causality techniques (Module 5) to quantify the directional
relations among multiple interdependent behavioral variables
within a system. Each module includes sample data collected
by developmental psychologists, and scripts provided in Module
1 allow users to import and format their own data for use
in subsequent modules. Experienced programmers can modify
scripts as desired.

It would be impossible to provide a complete introduction
to all techniques relevant to multimodal high-density data.
Many other techniques capture temporal dependencies in
sequential data, including but not limited to Markov-chain
based graphical modeling (Pentland and Liu, 1999), fractal
(Scafetta and Grigolini, 2002; Chen et al., 2010; Wijnants
et al., 2012a) and multifractal analyses (Ihlen, 2012; Kelty-
Stephen et al., 2013), dynamic field modeling (Thelen et al.,
2001; Cox and Smitsman, 2019), and dynamic causal modeling
(Stephen and Mirman, 2010). Such formal modeling approaches
hold assumptions about the structure and mechanisms of
activity. The approaches introduced here are mainly descriptive,
making at most minimal assumptions about the structure
of the input data and therefore naturally accommodating
stochastic processes.

Technology and novel computational methods are changing
the landscape of the field of psychology. Although considerable
effort has been devoted to open science and data sharing
(MacWhinney, 2014; Gilmore et al., 2016; Foster and Deardorff,
2017; Frank et al., 2017), researchers often neglect “method
sharing.” As pointed out by Caiafa and Pestilli (2017), in
this new data-intensive era, effectively every experiment is
the convergence of three key dimensions: data, analytics, and
computing. Platforms such as OpenNeuro (Gorgolewski et al.,
2017) and brainlife (Hayashi et al., 2017; Avesani et al.,
2019) have successfully achieved this vision of sharing data,
analysis methods and computing resources in neuroscience. As
psychologists begin to grapple with novel big-data techniques
for studying behavior, similar platforms could unite researchers
with different expertise to enhance scientific communication
and discovery while reducing cost of conducting novel and
interdisciplinary research. By sharing real data with detailed code
for a variety of techniques for analyzing high-density multimodal
activity, we take a first step toward the new behavioral science
of tomorrow.
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